Ученые биологи считают, что клетки проводящей ткани образовались в период, когда растения вышли из мирового океана на поверхность суши. Их верхняя часть оказалась в воздушном пространстве, а корневая система осталась в почве. Возникла необходимость питания стебля и листьев, которые нуждались в регулярном поступлении минеральных веществ. Эволюционные процессы привели к возникновению 2 разновидностей проводящей ткани. Это луб и древесина.
СОДЕРЖАНИЕ
Что такое проводящая ткань в биологии
Проводящая ткань - это совокупность сосудов и ситовидных трубок, которые обеспечивают транспортировку органических веществ, необходимых для питания структурных элементов растения. Внутри стенок проводящих каналов сосредоточены поры, а также сквозные отверстия, которые облегчают прокачивание минеральных компонентов по клеткам.
Строение проводящей ткани таково, что сосудистые образования и ситовидные трубки формируют единую разветвленную сеть, которой соединены все части растения. За счет этого тонкие корешки, молодые побеги, почки и только распустившиеся листья получают одинаковое количество органических веществ.
Виды проводящей ткани
Древесина и луб - это основные виды тканей высших растений, проводящие воду и минеральные компоненты. Структурные элементы данного типа имеют индивидуальную сосудистую сеть.
Ксилема (древесина)
Ксилема или древесина - это водопроводящая ткань, которая присутствует у наземных растений сосудистого типа. По целевому значению соответствует флоэме. Функциональное предназначение ксилемы - это доставка воды и минеральных веществ, прошедших стадию растворения, от корневой системы по направлению к мякоти листьев. Для древесины характерно наличие восходящего тока жидкости. Кроме физиологической функции, поддержания в растениях жизни, ксилема служит опорой для гибкого стебля.
Трахеиды
Древесина растений состоит из мертвых клеток - трахеидов. Это прозенхимные образования с длиной в 2–3 мм и шириной в десятые доли мм. Клетки этого типа отличаются утолщенной оболочкой с признаками одревеснения. В структуре трахеидов располагаются поры, через которые выполняется фильтрация минеральных растворов из одной клетки в другую.
Формирование трахеидов происходит из камбия, прокамбиальных пучков и меристемы (верхушечной части). Развитие этих клеток осуществляется интрузивно. Распространение трахеидов происходит в горизонтальном и вертикальном направлении. В связи с этим боковые стенки у них обладают свойством водопроницаемости. У голосеменных и папоротникообразных растений трахеиды являются единственным участком ксилемы, который обладает проводящей функцией.
Сосуды
Длинные трубки, образовавшиеся после слияния клеток, являются сосудами высших растений. Данные элементы входят в структуру ксилемы. Сосуды сформированы из одного ряда клеток, которые имеют сквозные отверстия на поперечных стенках. По этому участку проводящей ткани происходит передвижение большей части питательных веществ. Сосуды ксилемы состоят из следующих сегментов:
- Совокупность клеток, которые именуют члениками. Каждый членик располагается друг над другом, формируя полую трубку.
- Поперечные перегородки. Эти структурные элементы растворяются между члениками, образуя сквозные отверстия для оттока жидкости.
Каждый сосуд ксилемы состоит из огромного количества члеников. Их общая длина достигает 1 м. это универсальная сеть распределения питательных веществ для поддержания жизни в растительном организме.
Древесинные волокна
Либриформ или древесинные волокна входят в состав ксилемы. Это одревесневшие оболочки проводящей ткани, которые оснащены простыми порами с признаками щелевидных очертаний. Морфологическая структура древесинных волокон меняется в зависимости от условий окружающей среды, в которой произрастает растение. Либриформ - это многофункциональная ткань, которая также транспортирует вещества с питательными свойствами.
Паренхимные клетки
У высших сосудистых растений существует 2 вида паренхимных клеток, которые образуют проводящие ткани с разным функциональным значением. В таблице ниже указана характеристика этих структурных элементов.
Виды проводящих тканей, сформированные из паренхимных клеток разных типов | Отличительные особенности |
Аэренхима | Воздухоносная ткань внутри стебля, клетки которой соединены таким образом, что между их стенками образуются пустоты. Построение аэренхимы осуществляется из обыкновенных клеток паренхимного типа или из звездчатых. |
Запасающая паренхима | Особый вид проводящей ткани, которая способна пропускать через себя воду, питательные вещества, а также накапливать их в мякоти стеблей, луковиц, корневищах и плодах. Наличие паренхимных клеток этого типа характерно для многолетних растений. |
Паренхимные клетки высших сосудистых растений обладают способностью аккумулировать сложные биохимические компоненты в виде сахаров, протеинов, липидов, инулина и крахмала.
Флоэма (луб)
Кора или флоэма - это разновидность проводящей ткани, по сосудистой сети которой происходит перекачка продуктов фотосинтеза. Транспортировка питательных веществ осуществляется к тем частям растения, которые не контактируют с лучами солнца, но нуждаются в жизненной энергии. Это конусы нарастания, корневая система, плоды, соцветия.
Ситовидные элементы
Трубки ситовидного типа - это определенный вид сосудов в структуре высших растений. Данные элементы отвечают за проводимость углеводных компонентов из группы сахаров и пластических веществ с питательными свойствами. Ситовидные трубки располагаются в лубяной зоне сосудисто-волокнистого пучка.
Лубяные волокна
В стеблях семенных растений содержатся лишенные живой структуры прозенхимные клетки, которые также известны под названием лубяные волокна. Эта проводящая ткань древесины состоит из лигнина и целлюлозы. Лубяные волокна отличаются длиной в 1–2 мм, повышенной слоистостью и наличием простых пор.
Лубяная паренхима
У голосеменных растений лубяная паренхима формируется из клеток Страсбургера. У покрытосеменных данную функцию выполняет клетка спутница. Это структурный элемент проводящей ткани, который накапливает в растении питательные вещества, обогащенные органическими и минеральными элементами.
Жилка
У высших наземных растений присутствует специализированный вид сосудистой ткани - жилка, который располагается в губчатой прослойке листового мезофилла. Это проводящая ткань листа, обеспечивающая его насыщение питательными компонентами.
Рисунок физиологического разветвления жилки, соответствует структуре сосудистого разветвления всего растения. Уникальность данной ткани в том, что она состоит из ксилемы и флоэмы. За счет этого жилка одновременно проводит минеральные вещества, растворенные в воде, а также органические компоненты, образовавшиеся в процессе фотосинтеза.
Как вода поднимается от корней к листьям
Проводящие ткани обеспечивают транспортировку жидкости от корневой системы по направлению к листьям. Подъем воды вверх по стеблю возможен за счет внутреннего давления, которое присутствует в сосудах растения.
Под действием теплых лучей солнца покровная ткань листьев выпускает часть влаги в окружающую среду. На место испаренной воды из структуры корневой системы подается дополнительный объем жидкости, который необходим для обеспечения вегетации растения.
Корневое давление
В сосудистых растениях присутствует односторонний осмос-процесс, который формирует корневое давление. Его средние значения - от 1 до 10 АТ, а сила зависит от вида растения, температуры окружающей среды, наличия или отсутствия кислорода. Возникновение данного процесса происходит в момент, когда через мембрану клетки корня внутрь сосудов поступают минеральные и органические вещества. Эти компоненты извлекаются растением из структуры грунта. В этот момент создается давление, которое является более высоким, чем в почве.
Транспирация
Естественный процесс циркуляции воды и растворенных в ней питательных веществ - это природное явление транспирация. Механизм подачи жидкости от корневой системы по стеблю к листьям, плодам и соцветиям запускается по мере испарения влаги из покровных тканей растения. Реализация функции транспирации возможна только в том случае, если присутствует оптимальный уровень корневого давления.
В противном случае структурные элементы проводящей ткани не смогут полноценно распределять питательные вещества. Также возможно образование дефицита органических и минеральных компонентов. В подобной ситуации из-за недостаточного уровня транспирации наступает скорая гибель растения.
Значение и функции проводящей ткани растений
Ниже указано значение и перечислены функции проводящей ткани у сосудистых растений наземного типа:
- создание опоры для тонкого и гибкого стебля;
- насыщение клеток ксилемы питательными веществами;
- прокачивание минеральных и органических компонентов по всем отделам растения;
- аккумуляция влаги, жиров, протеинов, сахаров, крахмалистых соединений.
Проводящая ткань постоянно взаимодействует с корневой системой растения, создает оптимальный уровень внутрисосудистого давления и участвует в организации процесса транспирации. Повреждение структурных элементов проводящей ткани приводит к нарушению транспортировки питательных веществ к другим участкам растительного организма с дальнейшим наступлением его гибели.