Регуляция процессов жизнедеятельности организмов

Системы регуляции жизнедеятельности организма

Организм, как любая открытая биологическая система, характеризуется своим определенным набором упорядоченно взаимодействующих компонентов (систем органов), обеспечивающих целостность и устойчивость биосистемы в условиях меняющихся факторов внешней и внутренней среды.
Одним из основных и наиболее важных свойств живого организма является его способность поддерживать в течение жизни нормальное функционирование систем органов, обеспечивающее жизнедеятельность особи. Для поддержания постоянства работы органов необходима координация всех происходящих в организме жизненных процессов. В живой природе существует два типа регуляции – гуморальная и нервная.

Гуморальная регуляция (от лат. humor – жидкость) является механизмом химической координации процессов жизнедеятельности и осуществляется при участии особых биологически активных веществ, выделяемых клетками и тканями в жидкие среды организма: цитоплазму, кровь, лимфу, тканевую жидкость. У одноклеточных (простейших, водорослей, грибов) многие процессы жизнедеятельности регулируются посредством обмена между внешней и внутренней химической средой; при этом важную роль играют ионы кальция. У многоклеточных животных гуморальная регуляция осуществляется с помощью биологически активных веществ направленного действия – гормонов. У растений управление процессами роста и развития также обеспечивается биологически активными химическими соединениями – фитогормонами (ауксинами, гибберелинами и др.).

Гормональная система растений менее специализирована по сравнению с таковой у животных. Гормоны животных организмов образуются в специальных эндокринных железах и оказывают специфическое влияние на некотором расстоянии от места своего синтеза. У животных шире спектр гормонов, совершеннее система их транспорта и регуляция активности. Фитогормоны также синтезируются в определенных тканях растительного организма и транспортируются в другие, вызывая их функциональные изменения. Однако, в отличие от животных, у растений гормоны могут действовать и непосредственно в том месте, где они образуются. К тому же воздействие одного и того же фитогормона на разные ткани растения может приводить к различным ответным реакциям.

Все этапы развития организмов – от рождения до старости, как и все основные процессы их жизнедеятельности, происходят под контролем гормонов (или фитогормонов).

У одноклеточных единственная клетка, представляющая целостный организм, обладает определенной чувствительностью (обычно химической) и сама реагирует на раздражения. В процессе эволюции у большинства многоклеточных организмов, особенно у высших животных, наряду с гуморальной (жидкостной) регуляцией появляются особые чувствительные клетки и органы (рецепторы) и органы, выполняющие необходимый ответ (эффекторы). Причем с развитием нервной системы у животных формируются специальные структуры, обеспечивающие быструю передачу сигнала от рецептора к органу-эффектору (мышце, железе) для соответствующего ответа. Четкая координация работы органов (регуляция) достигается у живых организмов благодаря согласованной деятельности двух систем – гуморальной и нервной.

Нервная регуляция – механизм управления животным организмом, основанный на рефлекторных связях, характеризующийся как наиболее эффективный и быстрый. Эта регуляция осуществляется посредством нервной системы. Нервная система имеет ведущее значение в обеспечении целостности и координации работы систем органов животного организма.

В процессе эволюции нервная система прошла сложный путь развития: от беспорядочной сети нервных клеток и волокон, хаотически разбросанных в тканях тела (например, у гидры), до оформленных пучков нервных волокон и, наконец, до нервных стволов и центров (головного и спинного мозга), между которыми происходит обмен импульсами. Например, у позвоночных животных имеется сложно организованный полый головной мозг и тянущийся вдоль всего тела спинной мозг. Обе эти структуры, составляющие центральную нервную систему (ЦНС), образуются из нервной трубки зародыша. Кроме ЦНС, в организме имеется периферическая нервная система, которая охватывает все многочисленные парные нервы, отходящие от головного и спинного мозга.

Основой нервной системы являются нервные клетки – нейроны.

Нейрон получает, перерабатывает, проводит и передает информацию, закодированную в виде электрических и химических сигналов (нервных импульсов). Каждый нейрон имеет тело, отростки и их окончания. Снаружи нервная клетка окружена оболочкой, способной проводить возбуждение, а также обеспечивать обмен веществ с окружающей средой.

Схема строения нейрона
Схема строения нейрона (стрелки показывают направление движения импульса): 1 – тело клетки с ядром; 2 – эффектор; 3 – мышечное волокно; 4 – аксон; 5 – дендрит; 6 – миелиновая оболочка

Анатомически и функционально нейроны связаны с клетками нейроглии – вспомогательными клетками нервной ткани, выполняющими опорную, трофическую (питательную), разграничительную и защитную функции.

Диаметр тел нейронов варьирует от 1 до 1000 мкм. Форма тел нейронов также различна – округлая, овальная, пирамидальная. От тела нейрона отходят различной длины отростки двух типов. Короткие, ветвящиеся подобно дереву дендриты (от греч. dendron – дерево) проводят нервные импульсы к телу нейрона. Единственный длинный, обычно неветвящийся отросток – аксон (от греч. axon – ось) – проводит нервные импульсы от нейрона к другим клеткам – нервным, мышечным, секреторным. Многие крупные аксоны имеют миелиновую оболочку.

Существует три основных типа нейронов: чувствительные (или афферентные), двигательные (или эфферентные) и вставочные (или ассоциативные).

Чувствительные нейроны воспринимают сигналы из внешней и внутренней среды и проводят импульс от рецептора по направлению к ЦНС (в головной и спинной мозг). Двигательные нейроны иннервируют поперечнополосатые мышцы, сосуды, железы организма. Короткие ветвистые отростки двигательного нейрона – дендриты – передают импульсы к телу клетки, откуда импульсы распространяются по единственному длинному отростку (аксону) к эффектору – органу-мишени. Вставочные нейроны, составляющие до 97 % всех нервных клеток организма, находятся в пределах головного и спинного мозга, где, связывая нейроны между собой, передают полученные импульсы от афферентных нейронов к эфферентным.

Пучки аксонов формируют нервные волокна, из которых образуются нервы. Обычно нервы содержат несколько тысяч волокон. Например, в зрительном нерве человека их более одного миллиона. По каждому волокну нервный импульс распространяется изолированно, не переходя на другие волокна.

У всех позвоночных и многих высокоорганизованных беспозвоночных животных имеются головной мозг и спинной мозг, регулирующие работу всей нервной системы организма. В головном мозге в процессе эволюции сформировались координационные и ассоциативные центры, в которых происходит накопление и обработка информации, поступающей от органов чувств и афферентных нервов. Возникающие в результате двигательные импульсы отсылаются в двигательные стволы продолговатого и спинного мозга и оттуда – к эффекторам.

Взаимодействие гуморальной и нервной систем организма

Эволюционно нервная регуляция является более поздним механизмом по сравнению с гуморальной регуляцией. Однако по мере дифференциации и совершенствования нервной системы в ходе эволюции происходит подчинение гуморальной регуляции нервным связям. В этом случае говорят о нейрогуморальной регуляции.

Наиболее важную, интегрирующую функцию в системе физиологических механизмов в организме выполняет ЦНС, и прежде всего – кора головного мозга. Связующим звеном между эндокринной и нервной системами является гипоталамус – отдел промежуточного мозга, где осуществляется взаимодействие нервной и эндокринной систем. Нормальное функционирование организма в изменяющихся условиях среды обеспечивается согласованной нейрогуморальной регуляцией всех процессов его жизнедеятельности.